«Согласовано»

методическим объединением учителей естественно - математического цикла МБОУ «СОШ №13» г. Лениногорска протокол №1 от 10 августа 2018 года

_/ Ахметова Д.И.

подпись руководителя МО

ФИО

«Утверждено»

педагогическим советом протокол №1 от 13.08.2018 г. председатель педагогического совета:
_____ Павлов Т.В.

ТЕХНОЛОГИЯ «ОБРАЗОВАТЕЛЬНЫЙ МИНИМУМ» ПО ХИМИИ ДЛЯ 8-9 КЛАССА

Обязательный образовательный минимум	Класс	8
по химии	Полугодие	1

ТЕРМИНЫ	ОПРЕДЕЛЕНИЯ
Вещество	одна из форм материи
Монокупо	наименьшая частица вещества, обладающая его химическими
Молекула	свойствами.
	«неделимый» — частица вещества микроскопических размеров и
Атом	массы, наименьшая часть химического элемента, являющаяся
	носителем его свойств
Простое вещество	химические вещества, состоящие исключительно из атомов
простое вещество	одного <u>химического элемента</u>
Сложное вещество	это вещества, состоящие из атомов разных химических
	элементов.
Химический элемент	это совокупность <u>атомов</u> с одинаковым <u>зарядом</u> атомных ядер.
**	условное обозначение химического состава и структуры
Химическая формула	соединений с помощью символов химических элементов,
	числовых и вспомогательных знаков
11	- разновидности <u>атомов</u> (и <u>ядер</u>) какого-либо <u>химического</u>
Изотоп	элемента, которые имеют одинаковый атомный (порядковый)
	номер, но при этом разные массовые числа
Электронная орбиталь	Это область вероятного нахождения электрона вокруг атомного
	ядра.
D	способность атомов элементов оттягивать к себе общие
Электроотрицательность	электронные пары в химических соединениях называется
	электроотрицательностью (ЭО).
Ион	электрически заряженная частица, образующаяся при потере
	или присоединении электронов к атомам. химическая связь, образованная электростатическим
Ионная связь	притяжением между катионами и анионами.
	это связь происходящая за счет пары электронов,
Ковалентная связь	принадлежащей одновременно обоим атомам
	между положительно заряженными ионами (катионами) в
Металлическая связь	кристаллической решётке металлов, осуществляемая за счёт
тисталлическая связв	притяжения подвижных электронов.
	Аллотро́пия (от дргреч. ἄλλος «другой» + τρόπος «поворот,
	свойство») — существование двух и более простых веществ
	одного и того же химического элемента, различных по строению
	и свойствам — так называемых аллотропных (или
	аллотропических) модификаций или форм.
	Аллотро́пия (от дргреч. ἄλλος «другой» + τ ро́ π оς «поворот,
Аллотропия	свойство») — существование двух и более простых веществ
	одного и того же химического элемента, различных по строению
	и свойствам — так называемых аллотропных (или
	аллотропических) модификаций или форм.
	Аллотропия — это способность химических элементов
	находиться в виде двух и более простых веществ.
0	условный заряд атома в соединении, если считать, что связь в
Степень окисления	нём ионная.
0	сложные вещества, молекулы которых в своём составе имеют
Основания	одну или несколько гидрокси-групп ОН.

Кислоты	имеется один или несколько атомов водорода и кислотный
	остаток.
Оксиды	бинарное соединение химического элемента с кислородом в
Оксиды	степени окисления -2,
Соли	сложные вещества, молекулы которых, состоят из атомов
Соли	металлов и кислотных остатков
Индикаторы	вещества, изменяющие свой цвет в присутствии тех или иных
индикаторы	химических соединений в исследуемой среде.
ВЕЛИЧИНЫ	ФОРМУЛЫ
Количество вещества	NI /NI NI /NI
Количество вещества	$n = N / N_A$, $n = V / V_m$,
	n = m / M,
Моль	количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-
MOJIE	12 массой 0,012 кг
	101225 H 750
Нормальные условия	□ <u>Атмосферное давление</u> 101325 <u>Па</u> = 760 <u>мм рт. ст.</u> .
	\Box <u>Температура</u> воздуха 273,15 <u>K</u> = 0° C.
	В отличие от твердых и жидких веществ все газообразные
	вещества химическим количеством 1 моль занимают
Монаруууй обл ём	одинаковый объем (при одинаковых условиях). Эта величина
Молярный объём	называется молярным объемом и обозначается $V_{\rm m}$ = 22.4 л/
	МОЛЬ
	(00014100/07) 1022
TT A	$6,02214129(27) \cdot 10^{23} \text{ моль}^{-1}$
Число Авогадро	

Кислота – это сложное вещество, в молекуле которого

Обязательный образовательный минимум	Класс	8
по химии		
Фамилия	Полугодие	1
Имя		

ТЕРМИНЫ	ОПРЕДЕЛЕНИЯ
Вещество	
Молекула	
Атом	
Простое вещество	
Сложное вещество	
Химический элемент	
Химическая формула	
Изотоп	
Ионная связь	
Электронная орбиталь	
Электроотрицательность	
Ковалентная связь	
Металлическая связь	
Аллотропия	
Степень окисления	
Основания	
Кислоты	
Оксиды	
Индикаторы	
Соли	

величины	ФОРМУЛЫ
Количество вещества	
Моль	
Нормальные условия	
Молярный объём	
Число Авогадро	

Обязательный образовательный минимум	Класс	8
по химии		
	Полугодие	2
	-	

ОПРЕДЕЛЕНИЯ
это такие реакции, в результате которых из одного сложного
вещества образуется несколько новых
Это такие реакции, в результате которых из нескольких веществ
образуется одно сложное
Это такие реакции, в результате которых атомы просто
вещества замещают атомы одного из химических элементов в
сложном веществе
Это реакции, в результате которых два сложных вещества
обмениваются своими составными частями
Это вещества изменяющие скорость химических реакций, но по
окончании их остающиеся качественно и количественно не
изменёнными
Химические реакции, которые протекают одновременно в двух
противоположных направлениях - в прямом и обратном,
называют ОБРАТИМЫМИ
Реакции между ионами называют ионными реакциями, а
Уравнения таких реакций – ионными уравнениями
Атомы, ионы или молекулы отдающие электроны
Атомы, ионы или молекулы ,принимающие электроны
ФОРМУЛИРОВКА
Масса веществ, вступивших в химическую реакцию равна
массе веществ, получившейся в результате ее
Молекулярные химические соединения независимо от способа
их получения имеют постоянный состав и свойства

Обязательный образовательный минимум по	Класс	8
химии		
Фамилия	Полугодие	2
Имя		

ТЕРМИНЫ	ОПРЕДЕЛЕНИЯ
Реакция разложения	
Реакция Соединения	
Реакция замещения	
Реакция обмена	
Катализатор	
Обратимые химические реакции	
Ионные уравнения	
Восстановители	
Окислители	
ЗАКОН	ФОРМУЛИРОВКА
Закон сохранения массы веществ	
Закон постоянства состава веществ	

Обязательный образовательный минимум	Класс	9
по химии	Полугодие	1

ТЕРМИНЫ	ОПРЕДЕЛЕНИЯ
Амфотерные вещества	Вещества, которые в зависимости от условий реакций проявляют кислотные или основные свойства.
Периодический закон	Свойства химических веществ и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.
Пластичность	Это свойство вещества изменять форму под внешним воздействием и сохранять принятую форму после прекращения этого воздействия.
Сплавы	Это материалы с характерными свойствами, состоящие их двух или более компонентов, из которых по крайней мере один – металл.
Руды	Это содержащие и природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности.
Металлургия	Это наука о методах и процессах производства металлов из руд и других металлосодержащих продуктов, о получении сплавов и обработке металлов.
Пирометаллургия	Это методы переработки руд, образованных на химических реакциях, происходящих при высоких температурах.
Гидрометаллургия	Это методы получения металлов, основанные на химических реакциях, происходящих в растворах.
Электрометаллургия	Это методы получения металлов, основанные на электролизе, т.е выделении металлов из растворов или расплавов их соединений с помощью постоянного электрического тока.
Коррозия	Так называют самопроизвольное разрушение металлов и сплавов под влиянием окружающей среды.
Алюминотермия	Это способ получения металлов из оксидов с помощью алюминия.

Обязательный образовательный минимум	Класс	9
по химии		
Фамилия	Полугодие	1
Имя		

ТЕРМИНЫ	ОПРЕДЕЛЕНИЯ
Амфотерные вещества	
Периодический закон	
Пластичность	
Сплавы	
Руды	
Металлургия	
Пирометаллургия	
Гидрометаллургия	
Электрометаллургия	
Коррозия	
Алюминотермия	

Обязательный образовательный минимум	Класс	9
по химии	Полугодие	2

Определяемый ион	Ион, используемый для	Результаты качественной реакции	
_	определения		
H+	Индикаторы	Изменение окраски	
Ag+	Cl-	Белый осадок	
Cu2+	OH-	Голубой осадок	
Cu2+	S2-	Черный осадок	
Fe2+	ОН-	Зеленоватый осадок, который с течением времени буреет	
Fe3+	OH-	Осадок бурого цвета	
Zn2+	OH-	Белый осадок, при избытке щелочи растворяется	
A13+	ОН-	Белый желеобразный осадок, который при избытке ОН- растворяется	
NH+ 4	OH-	Запах аммиака	
Ba2+	SO2- 4	Белый осадок.	
		Окрашивание пламени в желто-зеленый	
		цвет	
Ca2+	CO2- 3	Белый осадок.	
		Окрашивание пламени в кирпично-	
		красный цвет	
Na+		Окрашивание пламени в желтый цвет	
K+		Окрашивание пламени в фиолетовый	
		цвет (через кобальтовое стекло)	
Cl-	Ag+	Белый осадок	
Br-	Ag+	Желтоватый осадок	
I-	Ag+	Желтый осадок	
SO2- 3	H+	Выделение SO2 – газа с резким запахом,	
		обесцвечивающим раствор фуксина и	
		фиолетовых чернил	
CO2- 3	H+	Выделение газа без запаха, вызывающего	
		помутнение известковой воды	
NO- 3	H2SO4(конц) и Си	Выделение бурого газа	
SO2-4	Ba2+	Белый осадок	
PO3-4	Ag+	Желтый осадок	
OH-	Индикаторы	Изменение окраски	

Обязательный образовательный минимум по химии		Класс	9
Фамилия		Полугодие	2
Имя			
Определяемый ион	Ион, используемый для определения	Результаты качественной реакции	
H+			
Ag+			
Cu2+			
Cu2+			
Fe2+			
Fe3+			
Zn2+			
Al3+			
NH+ 4			
Ba2+			
Ca2+			
Na+			
K+			
Cl-			
Br-			
I-			
SO2- 3			
CO2- 3			
NO- 3			
SO2- 4			
PO3- 4			
ОН-			